#3770. 4775. 网管
4775. 网管
#4775. 网管
题目描述
经过推选,黎瑟莫名其妙的当上了计算机系的网管。上任后的黎瑟才发现,这里的网络经常断掉。给定一棵边权均
为1的无根树,点可能是黑色或白色,支持两种操作。
1 xi pi表示目前点xi的颜色可能发生了翻转(黑变白,白变黑),发生概率为pi%。
2 si表示求E((∑x∈B dist(x,si))^2),其中B为当前黑点的集合,dist(x,y)表示x号节点和y号节点在树上的最短
距离。
输入格式
第一行三个整数id,n,m,表示数据编号,树的点数和操作个数。
第二行n个整数ci,若ci=1表示点i为黑色,否则表示点i为白色。
接下来的n-1行,每行两个整数ui,vi,表示树上有一条ui节点到vi节点的边。
接下来的m行,每行表示一个操作,格式如题
1 <=id <=20
1 <=n <=Nid
0 <=m <=Nid
1 <=ui, vi, xi, si <=n
0 <=ci <=1
0 <=pi <=100
输出格式
对于每个询问输出一行一个浮点数表示答案,输出与答案绝对误
差不超过 10^-6 就算正确。
样例
样例输入
1 100 100  
1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 0  
22 38  
29 28  
11 12  
21 20  
89 9  
50 78  
100 11  
94 70  
98 83  
21 91  
88 28  
8 7  
7 37  
37 72  
2 1  
80 53  
56 15  
84 46  
23 24  
3 2  
90 73  
37 45  
47 41  
44 27  
25 69  
73 15  
31 30  
93 37  
1 39  
57 65  
83 45  
78 81  
85 21  
50 60  
8 40  
51 79  
18 19  
61 37  
46 39  
19 20  
29 30  
55 12  
4 5  
14 13  
26 67  
43 16  
35 99  
16 52  
21 22  
66 14  
35 9  
59 15  
34 97  
33 34  
6 7  
20 74  
27 26  
13 12  
8 51  
24 36  
58 57  
20 41  
24 25  
28 49  
5 6  
54 17  
4 92  
18 17  
9 10  
48 6  
73 75  
31 32  
27 28  
16 15  
50 47  
63 2  
62 44  
16 17  
4 3  
30 77  
11 10  
9 8  
26 25  
33 32  
95 54  
15 53  
11 71  
1 57  
88 96  
42 34  
82 54  
76 39  
9 87  
62 64  
70 8  
86 37  
14 15  
22 23  
55 68  
2 52  
2 85  
1 46 92  
1 31 31  
1 33 17  
2 29  
2 49  
2 76  
2 63  
2 64  
2 6  
2 70  
2 15  
1 10 81  
2 57  
2 18  
1 66 67  
2 12  
1 19 62  
1 13 33  
2 77  
2 27  
2 94  
2 50  
1 82 49  
2 77  
2 6  
2 59  
2 31  
1 49 5  
2 60  
2 3  
1 62 16  
2 45  
2 21  
2 82  
2 85  
2 59  
2 85  
2 2  
2 47  
2 69  
2 79  
2 32  
2 92  
2 97  
2 43  
2 27  
1 12 100  
2 6  
2 62  
2 8  
2 38  
2 97  
2 72  
2 31  
2 24  
2 29  
1 93 26  
2 9  
2 13  
2 81  
1 18 85  
2 30  
2 57  
1 8 88  
2 41  
1 60 65  
2 28  
1 49 26  
2 42  
2 14  
1 4 60  
2 64  
1 54 14  
1 15 49  
2 85  
1 57 100  
2 9  
1 51 39  
2 33  
2 98  
2 84  
2 86  
2 72  
1 56 75  
2 74  
1 5 95  
2 5  
2 61  
1 97 72  
2 25  
2 43  
2 40  
2 9  
2 84  
1 67 23  
2 30  
1 28 45  
1 11 98  
样例输出
285156.0000000000000  
356409.0000000000000  
633144.1888000000000  
645494.1663999999900  
795511.3296000000600  
652911.3264000000200  
744654.5341999999900  
387472.5542000000100  
379903.7423999999900  
241023.5888000000000  
722637.2878000000500  
280453.3862000000100  
262575.0398000000300  
868854.3512000000300  
560120.4240000000000  
470363.8367999999900  
500708.2392000000100  
883592.7672000000000  
420633.3348000000100  
307082.7624000000100  
876612.0191999999800  
583093.3689999999500  
571399.7776000000300  
523911.4600000000200  
344890.9564000000200  
399381.5980000000000  
412288.3829999999700  
308954.6453999999800  
412288.3829999999700  
638584.7225999999800  
440964.3962000000200  
549969.2981999999600  
482785.1850000000000  
975195.7277999999900  
599016.6239999999500  
1317090.1503999999000  
318628.1340000000200  
569323.2412000000500  
416242.4682000000000  
706513.1548000000200  
342447.8570000000200  
427679.4048000000200  
1264839.2104000000000  
513831.8800000000000  
842802.4816000000600  
419775.2777999999800  
678712.3175999999500  
318367.8032000000200  
266443.8376000000300  
657353.4976000000000  
786264.5753999999700  
800298.0938000000300  
361871.2289999999900  
591276.2617999999800  
1225657.3586800001000  
246925.7472000000100  
746625.2759999999500  
378500.7612400000200  
301318.1878000000100  
952459.7794800000300  
655201.7177999999800  
956291.0853999999800  
495966.3180399999800  
495966.3180399999800  
330354.1699999999800  
442598.8577599999800  
486953.4574400000300  
434321.8692000000200  
305110.6744799999900  
414809.1759999999800  
321591.6599999999700  
995697.2360799999400  
713643.6037599999700