#P1156E. Special Segments of Permutation

    ID: 2632 远端评测题 2000ms 512MiB 尝试: 0 已通过: 0 难度: (无) 上传者: 标签>data structuresdivide and conquerdsutwo pointers*2200

Special Segments of Permutation

Description

You are given a permutation $p$ of $n$ integers $1$, $2$, ..., $n$ (a permutation is an array where each element from $1$ to $n$ occurs exactly once).

Let's call some subsegment $p[l, r]$ of this permutation special if $p_l + p_r = \max \limits_{i = l}^{r} p_i$. Please calculate the number of special subsegments.

The first line contains one integer $n$ ($3 \le n \le 2 \cdot 10^5$).

The second line contains $n$ integers $p_1$, $p_2$, ..., $p_n$ ($1 \le p_i \le n$). All these integers are pairwise distinct.

Print the number of special subsegments of the given permutation.

Input

The first line contains one integer $n$ ($3 \le n \le 2 \cdot 10^5$).

The second line contains $n$ integers $p_1$, $p_2$, ..., $p_n$ ($1 \le p_i \le n$). All these integers are pairwise distinct.

Output

Print the number of special subsegments of the given permutation.

Samples

5
3 4 1 5 2
2
3
1 3 2
1

Note

Special subsegments in the first example are $[1, 5]$ and $[1, 3]$.

The only special subsegment in the second example is $[1, 3]$.