#P1285F. Classical?
Classical?
Description
Given an array $a$, consisting of $n$ integers, find:
$$\max\limits_{1 \le i < j \le n} LCM(a_i,a_j),$$
where $LCM(x, y)$ is the smallest positive integer that is divisible by both $x$ and $y$. For example, $LCM(6, 8) = 24$, $LCM(4, 12) = 12$, $LCM(2, 3) = 6$.
The first line contains an integer $n$ ($2 \le n \le 10^5$) — the number of elements in the array $a$.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^5$) — the elements of the array $a$.
Print one integer, the maximum value of the least common multiple of two elements in the array $a$.
Input
The first line contains an integer $n$ ($2 \le n \le 10^5$) — the number of elements in the array $a$.
The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 10^5$) — the elements of the array $a$.
Output
Print one integer, the maximum value of the least common multiple of two elements in the array $a$.
Samples
3
13 35 77
1001
6
1 2 4 8 16 32
32