#P1533H. Submatrices

    ID: 692 远端评测题 3000ms 256MiB 尝试: 0 已通过: 0 难度: (无) 上传者: 标签>*special problembitmasksdata structuresdp

Submatrices

Description

You are given matrix $s$ that contains $n$ rows and $m$ columns. Each element of a matrix is one of the $5$ first Latin letters (in upper case).

For each $k$ ($1 \le k \le 5$) calculate the number of submatrices that contain exactly $k$ different letters. Recall that a submatrix of matrix $s$ is a matrix that can be obtained from $s$ after removing several (possibly zero) first rows, several (possibly zero) last rows, several (possibly zero) first columns, and several (possibly zero) last columns. If some submatrix can be obtained from $s$ in two or more ways, you have to count this submatrix the corresponding number of times.

The first line contains two integers $n$ and $m$ ($1 \le n, m \le 800$).

Then $n$ lines follow, each containing the string $s_i$ ($|s_i| = m$) — $i$-th row of the matrix.

For each $k$ ($1 \le k \le 5$) print one integer — the number of submatrices that contain exactly $k$ different letters.

Input

The first line contains two integers $n$ and $m$ ($1 \le n, m \le 800$).

Then $n$ lines follow, each containing the string $s_i$ ($|s_i| = m$) — $i$-th row of the matrix.

Output

For each $k$ ($1 \le k \le 5$) print one integer — the number of submatrices that contain exactly $k$ different letters.

Samples

2 3
ABB
ABA
9 9 0 0 0
6 6
EDCECE
EDDCEB
ACCECC
BAEEDC
DDDDEC
DDAEAD
56 94 131 103 57
3 10
AEAAEEEEEC
CEEAAEEEEE
CEEEEAACAA
78 153 99 0 0