#P1729F. Kirei and the Linear Function

Kirei and the Linear Function

Description

Given the string $s$ of decimal digits (0-9) of length $n$.

A substring is a sequence of consecutive characters of a string. The substring of this string is defined by a pair of indexes — with its left and right ends. So, each pair of indexes ($l, r$), where $1 \le l \le r \le n$, corresponds to a substring of the string $s$. We will define as $v(l,r)$ the numeric value of the corresponding substring (leading zeros are allowed in it).

For example, if $n=7$, $s=$"1003004", then $v(1,3)=100$, $v(2,3)=0$ and $v(2,7)=3004$.

You are given $n$, $s$ and an integer $w$ ($1 \le w < n$).

You need to process $m$ queries, each of which is characterized by $3$ numbers $l_i, r_i, k_i$ ($1 \le l_i \le r_i \le n; 0 \le k_i \le 8$).

The answer to the $i$th query is such a pair of substrings of length $w$ that if we denote them as $(L_1, L_1+w-1)$ and $(L_2, L_2+w-1)$, then:

  • $L_1 \ne L_2$, that is, the substrings are different;
  • the remainder of dividing a number $v(L_1, L_1+w-1) \cdot v(l_i, r_i) + v(L_2, L_2 + w - 1)$ by $9$ is equal to $k_i$.

If there are many matching substring pairs, then find a pair where $L_1$ is as small as possible. If there are many matching pairs in this case, then minimize $L_2$.

Note that the answer may not exist.

The first line contains a single integer $t$ ($1 \le t \le 10^4$) — number of input test cases.

The first line of each test case contains a string $s$, which contains only the characters 0-9 and has a length $n$ ($2 \le n \le 2 \cdot 10^5$).

The second line contains two integers $w, m$ ($1 \le w < n, 1 \le m \le 2 \cdot 10^5$), where $n$ — is the length of the given string $s$. The number $w$ denotes the lengths of the substrings being searched for, and $m$ is the number of queries to be processed.

The following $m$ lines contain integers $l_i, r_i, k_i$ ($1 \le l_i \le r_i \le n$, $0 \le k_i \le 8$) — $i$th query parameters.

It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$. It is also guaranteed that the sum of $m$ over all test cases does not exceed $2 \cdot 10^5$.

For each request, print in a separate line:

  • left borders of the required substrings: $L_1$ and $L_2$;
  • -1 -1 otherwise, if there is no solution.

If there are several solutions, minimize $L_1$ first, and minimize $L_2$ second.

Input

The first line contains a single integer $t$ ($1 \le t \le 10^4$) — number of input test cases.

The first line of each test case contains a string $s$, which contains only the characters 0-9 and has a length $n$ ($2 \le n \le 2 \cdot 10^5$).

The second line contains two integers $w, m$ ($1 \le w < n, 1 \le m \le 2 \cdot 10^5$), where $n$ — is the length of the given string $s$. The number $w$ denotes the lengths of the substrings being searched for, and $m$ is the number of queries to be processed.

The following $m$ lines contain integers $l_i, r_i, k_i$ ($1 \le l_i \le r_i \le n$, $0 \le k_i \le 8$) — $i$th query parameters.

It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$. It is also guaranteed that the sum of $m$ over all test cases does not exceed $2 \cdot 10^5$.

Output

For each request, print in a separate line:

  • left borders of the required substrings: $L_1$ and $L_2$;
  • -1 -1 otherwise, if there is no solution.

If there are several solutions, minimize $L_1$ first, and minimize $L_2$ second.

Samples

<div class="test-example-line test-example-line-even test-example-line-0">5</div><div class="test-example-line test-example-line-odd test-example-line-1">1003004</div><div class="test-example-line test-example-line-odd test-example-line-1">4 1</div><div class="test-example-line test-example-line-odd test-example-line-1">1 2 1</div><div class="test-example-line test-example-line-even test-example-line-2">179572007</div><div class="test-example-line test-example-line-even test-example-line-2">4 2</div><div class="test-example-line test-example-line-even test-example-line-2">2 7 3</div><div class="test-example-line test-example-line-even test-example-line-2">2 7 4</div><div class="test-example-line test-example-line-odd test-example-line-3">111</div><div class="test-example-line test-example-line-odd test-example-line-3">2 1</div><div class="test-example-line test-example-line-odd test-example-line-3">2 2 6</div><div class="test-example-line test-example-line-even test-example-line-4">0000</div><div class="test-example-line test-example-line-even test-example-line-4">1 2</div><div class="test-example-line test-example-line-even test-example-line-4">1 4 0</div><div class="test-example-line test-example-line-even test-example-line-4">1 4 1</div><div class="test-example-line test-example-line-odd test-example-line-5">484</div><div class="test-example-line test-example-line-odd test-example-line-5">1 5</div><div class="test-example-line test-example-line-odd test-example-line-5">2 2 0</div><div class="test-example-line test-example-line-odd test-example-line-5">2 3 7</div><div class="test-example-line test-example-line-odd test-example-line-5">1 2 5</div><div class="test-example-line test-example-line-odd test-example-line-5">3 3 8</div><div class="test-example-line test-example-line-odd test-example-line-5">2 2 6</div>
2 4
1 5
1 2
-1 -1
1 2
-1 -1
1 3
1 3
-1 -1
-1 -1
-1 -1

Note

Consider the first test case of example inputs. In this test case $n=7$, $s=$"1003004", $w=4$ and one query $l_1=1$, $r_1=2$, $k_1=1$. Note that $v(1,2)=10$. We need to find a pair of substrings of length $4$ such that $v(L_1, L_1+3)\cdot10+v(L_2,L_2+3)$ has a remainder of $k_1=1$ when divided by $9$. The values $L_1=2, L_2=4$ actually satisfy all the requirements: $v(L_1, L_1+w-1)=v(2,5)=30$, $v(L_2, L_2+w-1)=v(4,7)=3004$. Indeed, $30\cdot10+3004=3304$, which has a remainder of $1$ when divided by $9$. It can be shown that $L_1=2$ is the minimum possible value, and $L_2=4$ is the minimum possible with $L_1=2$.