#P1746F. Kazaee

Kazaee

Description

You have an array $a$ consisting of $n$ positive integers and you have to handle $q$ queries of the following types:

  • $1$ $i$ $x$: change $a_{i}$ to $x$,
  • $2$ $l$ $r$ $k$: check if the number of occurrences of every positive integer in the subarray $a_{l}, a_{l+1}, \ldots a_{r}$ is a multiple of $k$ (check the example for better understanding).

The first line of the input contains two integers $n$ and $q$ ($1 \le n , q \le 3 \cdot 10^5$), the length of $a$ and the number of queries.

Next line contains $n$ integers $a_{1}, a_{2}, \ldots a_{n}$ ($1 \le a_{i} \le 10^9$) — the elements of $a$.

Each of the next $q$ lines describes a query. It has one of the following forms.

  • $1$ $i$ $x$, ($1 \le i \le n$ , $1 \le x \le 10^9$), or
  • $2$ $l$ $r$ $k$, ($1 \le l \le r \le n$ , $1 \le k \le n$).

For each query of the second type, if answer of the query is yes, print "YES", otherwise print "NO".

Input

The first line of the input contains two integers $n$ and $q$ ($1 \le n , q \le 3 \cdot 10^5$), the length of $a$ and the number of queries.

Next line contains $n$ integers $a_{1}, a_{2}, \ldots a_{n}$ ($1 \le a_{i} \le 10^9$) — the elements of $a$.

Each of the next $q$ lines describes a query. It has one of the following forms.

  • $1$ $i$ $x$, ($1 \le i \le n$ , $1 \le x \le 10^9$), or
  • $2$ $l$ $r$ $k$, ($1 \le l \le r \le n$ , $1 \le k \le n$).

Output

For each query of the second type, if answer of the query is yes, print "YES", otherwise print "NO".

10 8<br>1234 2 3 3 2 1 1 2 3 4<br>2 1 6 2<br>1 1 1<br>2 1 6 2<br>2 1 9 2<br>1 10 5<br>2 1 9 3<br>1 3 5<br>2 3 10 2<br>
NO<br>YES<br>NO<br>YES<br>YES<br>

Note

In the first query, requested subarray is $[1234, 2, 3, 3, 2, 1]$, and it's obvious that the number of occurrence of $1$ isn't divisible by $k = 2$. So the answer is "NO".

In the third query, requested subarray is $[1, 2, 3, 3, 2, 1]$, and it can be seen that the number of occurrence of every integer in this sub array is divisible by $k = 2$. So the answer is "YES".

In the sixth query, requested subarray is $[1, 2, 3, 3, 2, 1, 1, 2, 3]$, and it can be seen that the number of occurrence of every integer in this sub array is divisible by $k = 3$. So the answer is "YES".