#P1946D. Birthday Gift

    ID: 8809 远端评测题 2000ms 256MiB 尝试: 0 已通过: 0 难度: 6 上传者: 标签>bitmasksbrute forceconstructive algorithmsgreedyimplementation*1900

Birthday Gift

Description

Yarik's birthday is coming soon, and Mark decided to give him an array $a$ of length $n$.

Mark knows that Yarik loves bitwise operations very much, and he also has a favorite number $x$, so Mark wants to find the maximum number $k$ such that it is possible to select pairs of numbers [$l_1, r_1$], [$l_2, r_2$], $\ldots$ [$l_k, r_k$], such that:

  • $l_1 = 1$.
  • $r_k = n$.
  • $l_i \le r_i$ for all $i$ from $1$ to $k$.
  • $r_i + 1 = l_{i + 1}$ for all $i$ from $1$ to $k - 1$.
  • $(a_{l_1} \oplus a_{l_1 + 1} \oplus \ldots \oplus a_{r_1}) | (a_{l_2} \oplus a_{l_2 + 1} \oplus \ldots \oplus a_{r_2}) | \ldots | (a_{l_k} \oplus a_{l_k + 1} \oplus \ldots \oplus a_{r_k}) \le x$, where $\oplus$ denotes the operation of bitwise XOR, and $|$ denotes the operation of bitwise OR.

If such $k$ does not exist, then output $-1$.

Each test consists of multiple test cases. The first line contains a single integer $t$ ($1 \le t \le 10^4$) — the number of test cases. The following lines contain the descriptions of the test cases.

The first line of each test case contains two integers $n$ and $x$ ($1 \le n \le 10^5, 0 \le x < 2^{30}$) — the length of the array $a$ and the number $x$ respectively.

The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i < 2^{30}$) — the array $a$ itself.

It is guaranteed that the sum of the values of $n$ across all test cases does not exceed $10^5$.

For each test case, output a single integer on a separate line — the maximum suitable number $k$, and $-1$ if such $k$ does not exist.

Input

Each test consists of multiple test cases. The first line contains a single integer $t$ ($1 \le t \le 10^4$) — the number of test cases. The following lines contain the descriptions of the test cases.

The first line of each test case contains two integers $n$ and $x$ ($1 \le n \le 10^5, 0 \le x < 2^{30}$) — the length of the array $a$ and the number $x$ respectively.

The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($0 \le a_i < 2^{30}$) — the array $a$ itself.

It is guaranteed that the sum of the values of $n$ across all test cases does not exceed $10^5$.

Output

For each test case, output a single integer on a separate line — the maximum suitable number $k$, and $-1$ if such $k$ does not exist.

8
3 1
1 2 3
2 2
1 1
2 2
1 3
2 3
0 0
3 2
0 0 1
4 2
1 3 3 7
2 2
2 3
5 0
0 1 2 2 1
2
2
1
2
3
-1
1
2

Note

In the first test case, you can take $k$ equal to $2$ and choose two segments [$1, 1$] and [$2, 3$], $(1) | (2 \oplus 3) = 1$. It can be shown that $2$ is the maximum possible answer.

In the second test case, the segments [$1, 1$] and [$2, 2$] are suitable, $(1) | (1) = 1$. It is not possible to make more segments.

In the third test case, it is not possible to choose $2$ segments, as $(1) | (3) = 3 > 2$, so the optimal answer is $1$.