#P1969E. Unique Array

    ID: 8864 远端评测题 2000ms 256MiB 尝试: 0 已通过: 0 难度: 9 上传者: 标签>binary searchdata structuresdivide and conquerdpgreedy*2400

Unique Array

Description

You are given an integer array $a$ of length $n$. A subarray of $a$ is one of its contiguous subsequences (i. e. an array $[a_l, a_{l+1}, \dots, a_r]$ for some integers $l$ and $r$ such that $1 \le l < r \le n$). Let's call a subarray unique if there is an integer that occurs exactly once in the subarray.

You can perform the following operation any number of times (possibly zero): choose an element of the array and replace it with any integer.

Your task is to calculate the minimum number of aforementioned operation in order for all the subarrays of the array $a$ to be unique.

The first line contains a single integer $t$ ($1 \le t \le 10^4$) — the number of test cases.

The first line of each test case contains a single integer $n$ ($1 \le n \le 3 \cdot 10^5$).

The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le n$).

Additional constraint on the input: the sum of $n$ over all test cases doesn't exceed $3 \cdot 10^5$.

For each test case, print a single integer — the minimum number of aforementioned operation in order for all the subarrays of the array $a$ to be unique.

Input

The first line contains a single integer $t$ ($1 \le t \le 10^4$) — the number of test cases.

The first line of each test case contains a single integer $n$ ($1 \le n \le 3 \cdot 10^5$).

The second line contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le n$).

Additional constraint on the input: the sum of $n$ over all test cases doesn't exceed $3 \cdot 10^5$.

Output

For each test case, print a single integer — the minimum number of aforementioned operation in order for all the subarrays of the array $a$ to be unique.

4
3
2 1 2
4
4 4 4 4
5
3 1 2 1 2
5
1 3 2 1 2
0
2
1
0

Note

In the second test case, you can replace the $1$-st and the $3$-rd element, for example, like this: $[3, 4, 1, 4]$.

In the third test case, you can replace the $4$-th element, for example, like this: $[3, 1, 2, 3, 2]$.