#P1971F. Circle Perimeter

    ID: 8903 远端评测题 1000ms 256MiB 尝试: 0 已通过: 0 难度: (无) 上传者: 标签>binary searchbrute forcedfs and similargeometryimplementationmath

Circle Perimeter

Description

Given an integer $r$, find the number of lattice points that have a Euclidean distance from $(0, 0)$ greater than or equal to $r$ but strictly less than $r+1$.

A lattice point is a point with integer coordinates. The Euclidean distance from $(0, 0)$ to the point $(x,y)$ is $\sqrt{x^2 + y^2}$.

The first line contains a single integer $t$ ($1 \leq t \leq 1000$) — the number of test cases.

The only line of each test case contains a single integer $r$ ($1 \leq r \leq 10^5$).

The sum of $r$ over all test cases does not exceed $10^5$.

For each test case, output a single integer — the number of lattice points that have an Euclidean distance $d$ from $(0, 0)$ such that $r \leq d < r+1$.

Input

The first line contains a single integer $t$ ($1 \leq t \leq 1000$) — the number of test cases.

The only line of each test case contains a single integer $r$ ($1 \leq r \leq 10^5$).

The sum of $r$ over all test cases does not exceed $10^5$.

Output

For each test case, output a single integer — the number of lattice points that have an Euclidean distance $d$ from $(0, 0)$ such that $r \leq d < r+1$.

6
1
2
3
4
5
1984
8
16
20
24
40
12504

Note

The points for the first three test cases are shown below.