#P1993B. Parity and Sum

Parity and Sum

Description

Given an array $a$ of $n$ positive integers.

In one operation, you can pick any pair of indexes $(i, j)$ such that $a_i$ and $a_j$ have distinct parity, then replace the smaller one with the sum of them. More formally:

  • If $a_i < a_j$, replace $a_i$ with $a_i + a_j$;
  • Otherwise, replace $a_j$ with $a_i + a_j$.

Find the minimum number of operations needed to make all elements of the array have the same parity.

The first line contains a single integer $t$ ($1 \le t \le 10^4$) — the number of test cases.

The first line of each test case contains a single integer $n$ ($1 \le n \le 2 \cdot 10^5$).

The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) — the elements of array $a$.

It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.

For each test case, output a single integer — the minimum number of operations required.

Input

The first line contains a single integer $t$ ($1 \le t \le 10^4$) — the number of test cases.

The first line of each test case contains a single integer $n$ ($1 \le n \le 2 \cdot 10^5$).

The second line contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) — the elements of array $a$.

It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.

Output

For each test case, output a single integer — the minimum number of operations required.

7
5
1 3 5 7 9
4
4 4 4 4
3
2 3 4
4
3 2 2 8
6
4 3 6 1 2 1
6
3 6 1 2 1 2
5
999999996 999999997 999999998 999999999 1000000000
0
0
2
4
3
3
3

Note

In the first test case, all integers already have the same parity. Therefore, no operation is needed.

In the third test case, we can perform two operations $(1, 2)$ and $(1, 3)$. The array $a$ transforms as follows: $a = [\color{red}2, \color{red}3, 4] \longrightarrow [\color{red}5, 3, \color{red}4] \longrightarrow [5, 3, 9]$.

In the fourth test case, an example of an optimal sequence of operations is $(1, 2)$, $(1, 3)$, $(1, 4)$, and $(1, 4)$. The array $a$ transforms as follows: $a = [\color{red}3, \color{red}2, 2, 8] \longrightarrow [\color{red}3, 5, \color{red}2, 8] \longrightarrow [\color{red}3, 5, 5, \color{red}8] \longrightarrow [\color{red}{11}, 5, 5, \color{red}8] \longrightarrow [11, 5, 5, 19]$.