#P316E2. Summer Homework

Summer Homework

Description

By the age of three Smart Beaver mastered all arithmetic operations and got this summer homework from the amazed teacher:

You are given a sequence of integers a1, a2, ..., an. Your task is to perform on it m consecutive operations of the following type:

  1. For given numbers xi and vi assign value vi to element axi.
  2. For given numbers li and ri you've got to calculate sum , where f0 = f1 = 1 and at i ≥ 2: fi = fi - 1 + fi - 2.
  3. For a group of three numbers li ri di you should increase value ax by di for all x (li ≤ x ≤ ri).

Smart Beaver planned a tour around great Canadian lakes, so he asked you to help him solve the given problem.

The first line contains two integers n and m (1 ≤ n, m ≤ 2·105) — the number of integers in the sequence and the number of operations, correspondingly. The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 105). Then follow m lines, each describes an operation. Each line starts with an integer ti (1 ≤ ti ≤ 3) — the operation type:

  • if ti = 1, then next follow two integers xi vi (1 ≤ xi ≤ n, 0 ≤ vi ≤ 105);
  • if ti = 2, then next follow two integers li ri (1 ≤ li ≤ ri ≤ n);
  • if ti = 3, then next follow three integers li ri di (1 ≤ li ≤ ri ≤ n, 0 ≤ di ≤ 105).

The input limits for scoring 30 points are (subproblem E1):

  • It is guaranteed that n does not exceed 100, m does not exceed 10000 and there will be no queries of the 3-rd type.

The input limits for scoring 70 points are (subproblems E1+E2):

  • It is guaranteed that there will be queries of the 1-st and 2-nd type only.

The input limits for scoring 100 points are (subproblems E1+E2+E3):

  • No extra limitations.

For each query print the calculated sum modulo 1000000000 (109).

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 2·105) — the number of integers in the sequence and the number of operations, correspondingly. The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 105). Then follow m lines, each describes an operation. Each line starts with an integer ti (1 ≤ ti ≤ 3) — the operation type:

  • if ti = 1, then next follow two integers xi vi (1 ≤ xi ≤ n, 0 ≤ vi ≤ 105);
  • if ti = 2, then next follow two integers li ri (1 ≤ li ≤ ri ≤ n);
  • if ti = 3, then next follow three integers li ri di (1 ≤ li ≤ ri ≤ n, 0 ≤ di ≤ 105).

The input limits for scoring 30 points are (subproblem E1):

  • It is guaranteed that n does not exceed 100, m does not exceed 10000 and there will be no queries of the 3-rd type.

The input limits for scoring 70 points are (subproblems E1+E2):

  • It is guaranteed that there will be queries of the 1-st and 2-nd type only.

The input limits for scoring 100 points are (subproblems E1+E2+E3):

  • No extra limitations.

Output

For each query print the calculated sum modulo 1000000000 (109).

Samples

5 5
1 3 1 2 4
2 1 4
2 1 5
2 2 4
1 3 10
2 1 5

12
32
8
50

5 4
1 3 1 2 4
3 1 4 1
2 2 4
1 2 10
2 1 5

12
45