#P444E. DZY Loves Planting
DZY Loves Planting
Description
DZY loves planting, and he enjoys solving tree problems.
DZY has a weighted tree (connected undirected graph without cycles) containing n nodes (they are numbered from 1 to n). He defines the function g(x, y) (1 ≤ x, y ≤ n) as the longest edge in the shortest path between nodes x and y. Specially g(z, z) = 0 for every z.
For every integer sequence p1, p2, ..., pn (1 ≤ pi ≤ n), DZY defines f(p) as .
DZY wants to find such a sequence p that f(p) has maximum possible value. But there is one more restriction: the element j can appear in p at most xj times.
Please, find the maximum possible f(p) under the described restrictions.
The first line contains an integer n (1 ≤ n ≤ 3000).
Each of the next n - 1 lines contains three integers ai, bi, ci (1 ≤ ai, bi ≤ n; 1 ≤ ci ≤ 10000), denoting an edge between ai and bi with length ci. It is guaranteed that these edges form a tree.
Each of the next n lines describes an element of sequence x. The j-th line contains an integer xj (1 ≤ xj ≤ n).
Print a single integer representing the answer.
Input
The first line contains an integer n (1 ≤ n ≤ 3000).
Each of the next n - 1 lines contains three integers ai, bi, ci (1 ≤ ai, bi ≤ n; 1 ≤ ci ≤ 10000), denoting an edge between ai and bi with length ci. It is guaranteed that these edges form a tree.
Each of the next n lines describes an element of sequence x. The j-th line contains an integer xj (1 ≤ xj ≤ n).
Output
Print a single integer representing the answer.
Samples
4
1 2 1
2 3 2
3 4 3
1
1
1
1
2
4
1 2 1
2 3 2
3 4 3
4
4
4
4
3
Note
In the first sample, one of the optimal p is [4, 3, 2, 1].