#P449D. Jzzhu and Numbers

Jzzhu and Numbers

Description

Jzzhu have n non-negative integers a1, a2, ..., an. We will call a sequence of indexes i1, i2, ..., ik (1 ≤ i1 < i2 < ... < ik ≤ n) a group of size k.

Jzzhu wonders, how many groups exists such that ai1 & ai2 & ... & aik = 0 (1 ≤ k ≤ n)? Help him and print this number modulo 1000000007 (109 + 7). Operation x & y denotes bitwise AND operation of two numbers.

The first line contains a single integer n (1 ≤ n ≤ 106). The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 106).

Output a single integer representing the number of required groups modulo 1000000007 (109 + 7).

Input

The first line contains a single integer n (1 ≤ n ≤ 106). The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 106).

Output

Output a single integer representing the number of required groups modulo 1000000007 (109 + 7).

Samples

3
2 3 3

0

4
0 1 2 3

10

6
5 2 0 5 2 1

53