#P677E. Vanya and Balloons
Vanya and Balloons
Description
Vanya plays a game of balloons on the field of size n × n, where each cell contains a balloon with one of the values 0, 1, 2 or 3. The goal is to destroy a cross, such that the product of all values of balloons in the cross is maximum possible. There are two types of crosses: normal and rotated. For example:
**o**
**o**
ooooo
**o**
**o**
or
o***o
*o*o*
**o**
*o*o*
o***o
Formally, the cross is given by three integers r, c and d, such that d ≤ r, c ≤ n - d + 1. The normal cross consists of balloons located in cells (x, y) (where x stay for the number of the row and y for the number of the column), such that |x - r|·|y - c| = 0 and |x - r| + |y - c| < d. Rotated cross consists of balloons located in cells (x, y), such that |x - r| = |y - c| and |x - r| < d.
Vanya wants to know the maximum possible product of the values of balls forming one cross. As this value can be large, output it modulo 109 + 7.
The first line of the input contains a single integer n (1 ≤ n ≤ 1000) — the number of rows and columns in the table with balloons.
The each of the following n lines contains n characters '0', '1', '2' or '3' — the description of the values in balloons.
Print the maximum possible product modulo 109 + 7. Note, that you are not asked to maximize the remainder modulo 109 + 7, but to find the maximum value and print it this modulo.
Input
The first line of the input contains a single integer n (1 ≤ n ≤ 1000) — the number of rows and columns in the table with balloons.
The each of the following n lines contains n characters '0', '1', '2' or '3' — the description of the values in balloons.
Output
Print the maximum possible product modulo 109 + 7. Note, that you are not asked to maximize the remainder modulo 109 + 7, but to find the maximum value and print it this modulo.
Samples
4
1233
0213
2020
0303
108
5
00300
00300
33333
00300
00300
19683
5
00003
02030
00300
03020
30000
108
5
21312
10003
10002
10003
23231
3
5
12131
12111
12112
21311
21212
24
Note
In the first sample, the maximum product is achieved for a rotated cross with a center in the cell (3, 3) and radius 1: 2·2·3·3·3 = 108.