#P819B. Mister B and PR Shifts
Mister B and PR Shifts
Description
Some time ago Mister B detected a strange signal from the space, which he started to study.
After some transformation the signal turned out to be a permutation p of length n or its cyclic shift. For the further investigation Mister B need some basis, that's why he decided to choose cyclic shift of this permutation which has the minimum possible deviation.
Let's define the deviation of a permutation p as .
Find a cyclic shift of permutation p with minimum possible deviation. If there are multiple solutions, print any of them.
Let's denote id k (0 ≤ k < n) of a cyclic shift of permutation p as the number of right shifts needed to reach this shift, for example:
- k = 0: shift p1, p2, ... pn,
- k = 1: shift pn, p1, ... pn - 1,
- ...,
- k = n - 1: shift p2, p3, ... pn, p1.
First line contains single integer n (2 ≤ n ≤ 106) — the length of the permutation.
The second line contains n space-separated integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the elements of the permutation. It is guaranteed that all elements are distinct.
Print two integers: the minimum deviation of cyclic shifts of permutation p and the id of such shift. If there are multiple solutions, print any of them.
Input
First line contains single integer n (2 ≤ n ≤ 106) — the length of the permutation.
The second line contains n space-separated integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the elements of the permutation. It is guaranteed that all elements are distinct.
Output
Print two integers: the minimum deviation of cyclic shifts of permutation p and the id of such shift. If there are multiple solutions, print any of them.
Samples
3
1 2 3
0 0
3
2 3 1
0 1
3
3 2 1
2 1
Note
In the first sample test the given permutation p is the identity permutation, that's why its deviation equals to 0, the shift id equals to 0 as well.
In the second sample test the deviation of p equals to 4, the deviation of the 1-st cyclic shift (1, 2, 3) equals to 0, the deviation of the 2-nd cyclic shift (3, 1, 2) equals to 4, the optimal is the 1-st cyclic shift.
In the third sample test the deviation of p equals to 4, the deviation of the 1-st cyclic shift (1, 3, 2) equals to 2, the deviation of the 2-nd cyclic shift (2, 1, 3) also equals to 2, so the optimal are both 1-st and 2-nd cyclic shifts.