#136. [NOIP2004 提高组] 虫食算

    ID: 136 传统题 1000ms 125MiB 尝试: 0 已通过: 0 难度: (无) 上传者: 标签>NOIP全国联赛提高组 2004年NOIP全国联赛提高组

[NOIP2004 提高组] 虫食算

[NOIP2004 提高组] 虫食算

题目描述

所谓虫食算,就是原先的算式中有一部分被虫子啃掉了,需要我们根据剩下的数字来判定被啃掉的数字。来看一个简单的例子:

$$\begin{aligned} \verb!43#9865#045! \\ +\qquad \verb!8468#6633! \\[-1em]\underline{\kern{8em}} \\ \verb!44445509678! \\ \end{aligned} $$

其中 # 号代表被虫子啃掉的数字。根据算式,我们很容易判断:第一行的两个数字分别是 5533,第二行的数字是 55

现在,我们对问题做两个限制:

首先,我们只考虑加法的虫食算。这里的加法是 nn 进制加法,算式中三个数都有 nn 位,允许有前导的 00

其次,虫子把所有的数都啃光了,我们只知道哪些数字是相同的,我们将相同的数字用相同的字母表示,不同的数字用不同的字母表示。如果这个算式是 nn 进制的,我们就取英文字母表的前 nn 个大写字母来表示这个算式中的 00n1n - 1nn 个不同的数字:但是这 nn 个字母并不一定顺序地代表 00n1n-1。输入数据保证 nn 个字母分别至少出现一次。

$$\begin{aligned} \verb!BADC! \\ +\quad \verb!CBDA! \\[-1em]\underline{\kern{4em}} \\ \verb!DCCC! \\ \end{aligned} $$

上面的算式是一个4进制的算式。很显然,我们只要让 ABCD\verb!ABCD! 分别代表 01230123,便可以让这个式子成立了。你的任务是,对于给定的 nn 进制加法算式,求出 nn 个不同的字母分别代表的数字,使得该加法算式成立。输入数据保证有且仅有一组解。

输入格式

输入的第一行是一个整数 nn,代表进制数。

第二到第四行,每行有一个由大写字母组成的字符串,分别代表两个加数以及和。这 33 个字符串左右两端都没有空格,从左到右依次代表从高位到低位,并且恰好有 nn 位。

输出格式

输出一行 nn 个用空格隔开的整数,分别代表 A,B,A,B, \dots 代表的数字。

样例 #1

样例输入 #1

5
ABCED
BDACE
EBBAA

样例输出 #1

1 0 3 4 2

提示

数据规模与约定

  • 对于 30%30\% 的数据,保证 n10n \le 10
  • 对于 50%50\% 的数据,保证 n15n \le 15
  • 对于 100%100\% 的数据,保证 1n261 \leq n \leq 26