#34. 「NOIP2017」奶酪
「NOIP2017」奶酪
题目描述
现有一块大奶酪,它的高度为 ,它的长度和宽度我们可以认为是无限大的,奶酪中间有许多半径相同的球形空洞。我们可以在这块奶酪中建立空间坐标系, 在坐标系中,奶酪的下表面为 ,奶酪的上表面为 。
现在, 奶酪的下表面有一只小老鼠 Jerry,它知道奶酪中所有空洞的球心所在的坐标。如果两个空洞相切或是相交,则 Jerry 可以从其中一个空洞跑到另一个空洞,特别 地,如果一个空洞与下表面相切或是相交,Jerry 则可以从奶酪下表面跑进空洞; 如果一个空洞与上表面相切或是相交,Jerry 则可以从空洞跑到奶酪上表面。
位于奶酪下表面的 Jerry 想知道,在不破坏奶酪的情况下,能否利用已有的空洞跑到奶酪的上表面去?
空间内两点 、 的距离公式如下:
$$\operatorname{dist}(P_1,P_2)=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2} $$输入格式
每个输入文件包含多组数据。
输入文件的第一行,包含一个正整数 ,代表该输入文件中所含的数据组数。
接下来是 组数据,每组数据的格式如下:
第一行包含三个正整数 和 ,两个数之间以一个空格分开,分别代表奶酪中空洞的数量,奶酪的高度和空洞的半径。
接下来的 行,每行包含三个整数 ,两个数之间以一个空格分开,表示空洞球心坐标为 。
输出格式
输出文件包含 行,分别对应 组数据的答案,如果在第 组数据中, Jerry 能从下表面跑到上表面,则输出“Yes”,如果不能,则输出“No”(均不包含引号)。
样例
3
2 4 1
0 0 1
0 0 3
2 5 1
0 0 1
0 0 4
2 5 2
0 0 2
2 0 4
Yes
No
Yes
数据范围与提示
对于 的数据, ,坐标的绝对值不超过 。
对于 的数据, ,坐标的绝对值不超过 。
对于 的数据, ,坐标的绝对值不超过 。
对于 的数据, ,坐标的绝对值不超过 。