#P2527. Polynomial Remains

    ID: 1537 远端评测题 1000ms 64MiB 尝试: 0 已通过: 0 难度: (无) 上传者: 标签>Alberta Collegiate Programming Contest 2003.10.18

Polynomial Remains

Description

Given the polynomial

a(x) = an xn + ... + a1 x + a0,

compute the remainder r(x) when a(x) is divided by xk+1.

Input

The input consists of a number of cases. The first line of each case specifies the two integers n and k (0 <= n, k <= 10000). The next n+1 integers give the coefficients of a(x), starting from a0 and ending with an. The input is terminated if n = k = -1.

Output

For each case, output the coefficients of the remainder on one line, starting from the constant coefficient r0. If the remainder is 0, print only the constant coefficient. Otherwise, print only the first d+1 coefficients for a remainder of degree d. Separate the coefficients by a single space.

You may assume that the coefficients of the remainder can be represented by 32-bit integers.

5 2
6 3 3 2 0 1
5 2
0 0 3 2 0 1
4 1
1 4 1 1 1
6 3
2 3 -3 4 1 0 1
1 0
5 1
0 0
7
3 5
1 2 3 4
-1 -1
3 2
-3 -1
-2
-1 2 -3
0
0
1 2 3 4

Source

Alberta Collegiate Programming Contest 2003.10.18