#P3134. Power Calculus
Power Calculus
Description
Starting with x and repeatedly multiplying by x, we can compute x31 with thirty multiplications: x2 = x × x, x3 = x2 × x, x4 = x3 × x, …, x31 = x30 × x. The operation of squaring can be appreciably shorten the sequence of multiplications. The following is a way to compute x31 with eight multiplications: x2 = x × x, x3 = x2 × x, x6 = x3 × x3, x7 = x6 × x, x14 = x7 × x7, x15 = x14 × x, x30 = x15 × x15, x31 = x30 × x. This is not the shortest sequence of multiplications to compute x31. There are many ways with only seven multiplications. The following is one of them: x2 = x × x, x4 = x2 × x2, x8 = x4 × x4, x8 = x4 × x4, x10 = x8 × x2, x20 = x10 × x10, x30 = x20 × x10, x31 = x30 × x. If division is also available, we can find a even shorter sequence of operations. It is possible to compute x31 with six operations (five multiplications and one division): x2 = x × x, x4 = x2 × x2, x8 = x4 × x4, x16 = x8 × x8, x32 = x16 × x16, x31 = x32 ÷ x. This is one of the most efficient ways to compute x31 if a division is as fast as a multiplication. Your mission is to write a program to find the least number of operations to compute xn by multiplication and division starting with x for the given positive integer n. Products and quotients appearing in the sequence should be x to a positive integer’s power. In others words, x−3, for example, should never appear.
Input
The input is a sequence of one or more lines each containing a single integer n. n is positive and less than or equal to 1000. The end of the input is indicated by a zero.
Output
Your program should print the least total number of multiplications and divisions required to compute xn starting with x for the integer n. The numbers should be written each in a separate line without any superfluous characters such as leading or trailing spaces.
1
31
70
91
473
512
811
953
0
0
6
8
9
11
9
13
12
Source
Japan 2006