#FINDLR. Find Linear Recurrence
Find Linear Recurrence
You are given the first $2K$ integers $a_0, a_1, \ldots, a_{2K-1}$ (modulo $M$) of an infinite integer sequence $(a_i)_{i=0}^{\infty}$ that satisfies an integer-coefficient linear recurrence relation of order $K$.
That is, they satisfy $$ a_n = \sum_{i=1}^{K} c_i a_{n-i} $$ for $n \ge K$, where $c_1, \ldots, c_K$ are integer constants.
Find $a_{2K}$ modulo $M$.
Input
The first line contains $T$ ($1 \le T \le 4000$), the number of test cases.
Each test case consists of two lines:
- First line contains $K$ ($1 \le K \le 50$) and $M$ ($1 \le M < 2^{31}$).
- Next line contains $2K$ integers $a_0, a_1, \ldots, a_{2K-1}$ (modulo $M$).
Note: $M$ is not necessarily a prime.
Output
For each test case, output $a_{2K}$ modulo $M$.
Example
Input
6 1 16 4 8 1 10 4 8 2 64 13 21 34 55 2 27 13 21 7 1 3 1000000007 32 16 8 4 2 1 2 64 13 21 34 56
Output
0 6 25 8 500000004 40