#PAIRDIV2. Pair Divisible 2
Pair Divisible 2
Let $C(N, a, b)$ be the number of integer pairs $(x, y)$ in $1 \le x \le a$, $1 \le y \le b$ such that $xy$ is divisible by $N$.
Given $N$, $a$ and $b$, find $C(N, a, b)$ modulo $10^{9}$.
Input
The first line contains $T$, the number of test cases.
In each of the next $T$ lines, you are given three numbers $N$, $a$ and $b$.
Output
For each test case, print $C(N, a, b)$ modulo $10^{9}$.
Constraints
$1 \le T \le 100$
$1 \le N \le 10^{18}$, $1 \le a \le 10^{18}$, $1 \le b \le 10^{18}$.
You can assume that the maximum prime factor of $N$ is less than or equal to $10^{5}$.
Example
Input
5 1 1 1 2 2 2 10 10 10 100 100 100 1 10000 100000
Output
1 3 27 520 0