#PIBO2. Fibonacci vs Polynomial (HARD)

Fibonacci vs Polynomial (HARD)

Define a sequence Pib(n) as following

  • Pib(0) = 1
  • Pib(1) = 1
  • otherwise, Pib(n) = Pib(n-1) + Pib(n-2) + P(n)

Here P is a polynomial.

Given n and P, find Pib(n) modulo 1,111,111,111.

Maybe you should solve PIBO before this task, it has lower constraints.

Input

First line of input contains two integer n and d (0 ≤ n ≤ 109, 0 ≤ d ≤ 10000), d is the degree of polynomial.

The second line contains d+1 integers c0,c1 … cd, represent the coefficient of the polynomial (Thus P(x) can be written as Σcixi). 0 ≤ ci < 1,111,111,111 and cd ≠ 0 unless d = 0.

Output

A single integer represents the answer.

Example

Input:
10 0
0

Output: 89

Input: 10 0 1

Output: 177

Input: 100 1 1 1

Output: 343742333

</p>