#POLTOPOL. Polynomial f(x) to Polynomial h(x)
Polynomial f(x) to Polynomial h(x)
Given polynomial of degree d, f(x)=c0+c1x+c2x2+c3x3+...+cdxd
For each polynomial f(x) there exists polynomial g(x) such that:
-> f(x)=g(x)-g(x-1) for each integer x
-> g(0)=0
Your task is to calculate polynomial h(x)=g(x)/x
(Note : degree of polynomial h(x) = degree of polynomial f(x))
Input
The first line of input contain an integer T, T is number of test cases (0<T≤104)
Each test case consist of 2 lines:
- First line of the test case contain an integer d, d is degree of polynomial f(x) (0≤d≤18)
- Next line contains d+1 integers c0,c1,...,cd, separated by space, represent the coefficient of polynomial f(x) (-231<c0,c1,...,cd<231 and cd≠0)
Output
For each test case, output the coefficient of polynomial h(x) separated by space. Each coefficient of polynomial h(x) is guaranteed to be an integer.
Example
Input: 5
0
13
1
-1 2
1
0 2
2
2 -5 9
3
23 9 21 104</p>Output: 13
0 1
1 1
1 2 3
31 41 59 26
---------------------------------------------------------------
Explanation for the first test case :
f(x)=13
g(x) that satisfy: g(x)-g(x-1)=f(x)=13 and g(0)=0 is: g(x)=13x
h(x)=g(x)/x so h(x)=13
output : 13
Explanation for the second test case :
f(x)=-1+2x
g(x) that satisfy: g(x)-g(x-1)=f(x)=-1+2x and g(0)=0 is: g(x)=x2
h(x)=g(x)/x so h(x)=x=0+1x
output : 0 1
Explanation for the third test case :
f(x)=0+2x
g(x) that satisfy: g(x)-g(x-1)=f(x)=2x and g(0)=0 is: g(x)=x+x2
h(x)=g(x)/x so h(x)=1+1x
output : 1 1
---------------------------------------------------------------