#PRLCM. Personal LCM

Personal LCM

We have an integer sequence of length N: A0, A, ... AN−1.

Find the following sum:

$\displaystyle\sum^{N-2}_{i=0}{\sum^{N-1}_{j=i+1}{lcm(Ai, Aj)}}$

(Note: lcm(a, b) denotes the least common multiple of a and b)

Since the answer may be enormous, compute it modulo 998244353

Constraints

  • 1 ≤ N ≤ 2 * 105
  • 1 ≤ A<sub.j ≤ 106</sub.j
  • All values in input are integers.

Input

First line of input will be consist of a single N, number of elements.

In next line you will get N space separated integers: A0 A1 A2 A3 A4 ... AN-1

Output

Print the sum modulo 998244353.

Example

Input:
3
2 4 6

Output: 22

</p>

Explanation

lcm(2, 4) + lcm(2, 6) + lcm(4, 6) = 4 + 6 + 12 = 22.