#SEGSQRSS. Sum of Squares with Segment Tree
Sum of Squares with Segment Tree
Segment trees are extremely useful. In particular "Lazy Propagation" (i.e. see here, for example) allows one to compute sums over a range in O(lg(n)), and update ranges in O(lg(n)) as well. In this problem you will compute something much harder:
The sum of squares over a range with range updates of 2 types:
1) increment in a range
2) set all numbers the same in a range.
Input
There will be T (T <= 25) test cases in the input file. First line of the input contains two positive integers, N (N <= 100,000) and Q (Q <= 100,000). The next line contains N integers, each at most 1000. Each of the next Q lines starts with a number, which indicates the type of operation:
2 st nd -- return the sum of the squares of the numbers with indices in [st, nd] {i.e., from st to nd inclusive} (1 <= st <= nd <= N).
1 st nd x -- add "x" to all numbers with indices in [st, nd] (1 <= st <= nd <= N, and -1,000 <= x <= 1,000).
0 st nd x -- set all numbers with indices in [st, nd] to "x" (1 <= st <= nd <= N, and -1,000 <= x <= 1,000).
Output
For each test case output the “Case <caseno>:” in the first line and from the second line output the sum of squares for each operation of type 2. Intermediate overflow will not occur with proper use of 64-bit signed integer.
Example
Input: 2 4 5 1 2 3 4 2 1 4 0 3 4 1 2 1 4 1 3 4 1 2 1 4 1 1 1 2 1 1</p>Output: Case 1: 30 7 13 Case 2: 1