#TRIMOD2. The triangle of Pascal modulo 2
The triangle of Pascal modulo 2
Consider Pascal’s triangle modulo 2. The first nine rows are given below:
1
1 1
1 0 1
1 1 1 1
1 0 0 0 1
1 1 0 0 1 1
1 0 1 0 1 0 1
1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 1
Let F(n) be the number of 1
in the first n rows. So that F(0) = 0, F(1) = 1, F(2) = 3, etc.
Given a, find the smallest integer n such that F(n) ≥ a. Let N(a) denote this integer.
Input
A list of integers a1, ..., al, between 0 and 1018, one per line.
Output
The integers N(a1), ..., N(al), one per line.
Example
input: 0 1 4 15</p>output: 0 1 3 6