#172. [SCOI2012]滑雪与时间胶囊
[SCOI2012]滑雪与时间胶囊
[SCOI2012] 滑雪
题目描述
a180285 非常喜欢滑雪。他来到一座雪山,这里分布着 条供滑行的轨道和 个轨道之间的交点(同时也是景点),而且每个景点都有一编号 和一高度 。
a180285 能从景点 滑到景点 当且仅当存在一条 和 之间的边,且 的高度不小于 。与其他滑雪爱好者不同,a180285 喜欢用最短的滑行路径去访问尽量多的景点。如果仅仅访问一条路径上的景点,他会觉得数量太少。
于是 a18028 5拿出了他随身携带的时间胶囊。这是一种很神奇的药物,吃下之后可以立即回到上个经过的景点(不用移动也不被认为是 a180285 滑行的距离)。
请注意,这种神奇的药物是可以连续食用的,即能够回到较长时间之前到过的景点(比如上上个经过的景点和上上上个经过的景点)。 现在,a180285站在 号景点望着山下的目标,心潮澎湃。他十分想知道在不考虑时间胶囊消耗的情况下,以最短滑行距离滑到尽量多的景点的方案(即满足经过景点数最大的前提下使得滑行总距离最小)。你能帮他求出最短距离和景点数吗?
输入格式
输入的第一行是两个整数 。 接下来一行有 个整数 ,分别表示每个景点的高度。
接下来 行,表示各个景点之间轨道分布的情况。每行三个整数 ,表示编号为 的景点和编号为 的景点之间有一条长度为 的轨道。
输出格式
输出一行,表示 a180285 最多能到达多少个景点,以及此时最短的滑行距离总和。
样例 #1
样例输入 #1
3 3
3 2 1
1 2 1
2 3 1
1 3 10
样例输出 #1
3 2
提示
【数据范围】 对于 的数据,; 对于 的数据,。
对于所有的数据,保证 , ,。