E. [NOIP2013-普及]车站分级

    传统题 1000ms 256MiB

[NOIP2013-普及]车站分级

该比赛已结束,您无法在比赛模式下递交该题目。您可以点击“在题库中打开”以普通模式查看和递交本题。

题目描述

一条单向的铁路线上,依次有编号为 1,2,,n1, 2, …, n nn 个火车站。每个火车站都有一个级别,最低为 11 级。现有若干趟车次在这条线路上行驶,每一趟都满足如下要求:如果这趟车次停靠了火车站 xx,则始发站、终点站之间所有级别大于等于火车站x x 的都必须停靠。(注意:起始站和终点站自然也算作事先已知需要停靠的站点)

例如,下表是5 5 趟车次的运行情况。其中,前4 4 趟车次均满足要求,而第 55 趟车次由于停靠了 33 号火车站(22 级)却未停靠途经的 66 号火车站(亦为 22 级)而不满足要求。

现有 mm 趟车次的运行情况(全部满足要求),试推算这n n 个火车站至少分为几个不同的级别。

输入输出格式

输入格式:

第一行包含 22 个正整数 n,mn, m,用一个空格隔开。

i+1i + 1(1im)(1 ≤ i ≤ m)中,首先是一个正整数 si(2sin)s_i(2 ≤ s_i ≤ n),表示第i i 趟车次有 sis_i 个停靠站;接下来有si s_i个正整数,表示所有停靠站的编号,从小到大排列。每两个数之间用一个空格隔开。输入保证所有的车次都满足要求。

输出格式:

一个正整数,即 nn 个火车站最少划分的级别数。

输入输出样例

输入样例#1:

9 2 4 1 3 5 6 3 3 5 6

输出样例#1:

2

输入样例#2:

9 3 4 1 3 5 6 3 3 5 6 3 1 5 9

输出样例#2:

3

说明

对于20% 20\%的数据,1n,m101 ≤ n, m ≤ 10

对于 50%50\%的数据,1n,m1001 ≤ n, m ≤ 100

对于 100%100\%的数据,1n,m10001 ≤ n, m ≤ 1000

「图论专题1」 图的基本操作

未参加
状态
已结束
规则
IOI
题目
6
开始于
2022-4-26 20:30
结束于
2023-2-20 20:30
持续时间
7200 小时
主持人
参赛人数
15